论文标题

$ l^p $ - 交叉产品的下限

Lower bounds in $L^p$-transference for crossed-products

论文作者

González-Pérez, Adrián M.

论文摘要

令$γ\ curvearrowrightω$为一种措施的动作,$ \ Mathcal {l}γ\ HookrightArrow l^\ infty(ω)\ rtimesγ$ von Neumann代数的自然包含在交叉产品中。当$μ(ω)= \ infty $时,我们有这种天然嵌入不具有跟踪性的含量,因此不会限制到相关的非交换$ l^p $ - 空格。然而,我们表明,当$ω$不变时,意味着$ l^p(\ nathcal {l}γ)$的等距嵌入到$ l^p(ω\rtimesγ)$的超能中,它交织了傅立叶型乘数,并且是$ \ mathcal {l Mathcal {l} l}γ$ -Bimodular。结果,我们获得了较低的转移结合\ [ \ big \ | t_m:l^p(\ Mathcal {l}γ)\ to l^p(\ Mathcal {l}γ)\ big \ | \ leq \ big \ | (\ mathrm {id} \ rtimes t_m):l^p(ω\ rtimesγ)\ to l^p(ω\ rtimesγ)\ big \ |,\],完整规范也是如此。 具有不变平均值的条件是相当限制的。因此,我们探讨了其他epariant嵌入$φ是否:\ Mathcal {l}γ\ to l^\ infty(ω)$产生更一般的转移结果。我们表明,每当$φ$完全正面,可正常(在诱导正常的信件的意义上),上面的转移证明在逐字化,并且以$ l^2 $ level的方式将傅立叶乘数交织在一起。尽管没有获得新的转移结果,但同性图的分类及其研究性可能对某些读者具有独立的兴趣。

Let $Γ\curvearrowright Ω$ be a measure-preserving action and $\mathcal{L} Γ\hookrightarrow L^\infty(Ω) \rtimes Γ$ the natural inclusion of the group von Neumann algebra into the crossed product. When $μ(Ω) = \infty$, we have that this natural embedding is not trace-preserving and therefore does not extends boundedly to the associated noncommutative $L^p$-spaces. Nevertheless, we show that when $Ω$ has an invariant mean there is an isometric embedding of $L^p(\mathcal{L} Γ)$ into an ultrapower of $L^p(Ω\rtimes Γ)$ that intertwines Fourier multipliers and is $\mathcal{L} Γ$-bimodular. As a consequence we obtain the lower transference bound \[ \big\| T_m: L^p(\mathcal{L} Γ) \to L^p(\mathcal{L} Γ) \big\| \leq \big\| (\mathrm{id} \rtimes T_m): L^p(Ω\rtimes Γ) \to L^p(Ω\rtimes Γ) \big\|, \] and the same follows for complete norms. The condition of having an invariant mean is quite restrictive. Therefore, we explore whether other equivariant embeddings $Φ: \mathcal{L} Γ\to L^\infty(Ω)$ yield a more general transference result. We show that the transference proof above works verbatim whenever $Φ$ is completely positive, amenable (in the sense of inducing an amenable correspondence) and intertwines Fourier multipliers at the $L^2$-level. Although no new transference results are obtained, both the classification of equivariant maps and the study their amenability may be of independent interest to some readers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源