论文标题
强大的口语理解与基于RL的价值错误恢复
Robust Spoken Language Understanding with RL-based Value Error Recovery
论文作者
论文摘要
口头语言理解(SLU)旨在从语音公认的文本中提取结构化的语义表示(例如,插槽值对),该文本患有自动语音识别的错误(ASR)。为了减轻ASR纠纷引起的问题,以前的作品可以通过搜索发音中的最相似的候选者来将输入改编应用于语音识别的文本或正确的预测值中的ASR错误。但是,这两种方法是单独和独立应用的。在这项工作中,我们提出了一个新的健壮SLU框架,以使用基于规则的价值错误恢复模块指导SLU输入适应。该框架由插槽标记模型和基于规则的价值错误恢复模块组成。我们在适应的插槽标记模型上追求,该模型可以提取ASR假设中提到的潜在插槽值对,并且适用于现有的值误差恢复模块。在值误恢复后,我们可以通过将精制的插槽值对与注释进行比较来获得监督信号(奖励)。由于价值错误恢复的操作是不可差异的,因此我们利用基于策略梯度的加固学习(RL)来优化SLU模型。公共CATSLU数据集的广泛实验显示了我们提出的方法的有效性,这可以提高SLU的鲁棒性并以显着的利润来胜过基线。
Spoken Language Understanding (SLU) aims to extract structured semantic representations (e.g., slot-value pairs) from speech recognized texts, which suffers from errors of Automatic Speech Recognition (ASR). To alleviate the problem caused by ASR-errors, previous works may apply input adaptations to the speech recognized texts, or correct ASR errors in predicted values by searching the most similar candidates in pronunciation. However, these two methods are applied separately and independently. In this work, we propose a new robust SLU framework to guide the SLU input adaptation with a rule-based value error recovery module. The framework consists of a slot tagging model and a rule-based value error recovery module. We pursue on an adapted slot tagging model which can extract potential slot-value pairs mentioned in ASR hypotheses and is suitable for the existing value error recovery module. After the value error recovery, we can achieve a supervision signal (reward) by comparing refined slot-value pairs with annotations. Since operations of the value error recovery are non-differentiable, we exploit policy gradient based Reinforcement Learning (RL) to optimize the SLU model. Extensive experiments on the public CATSLU dataset show the effectiveness of our proposed approach, which can improve the robustness of SLU and outperform the baselines by significant margins.