论文标题

关于空间形式的封闭双守护表面的存在

On the Existence of Closed Biconservative Surfaces in Space Forms

论文作者

Montaldo, Stefano, Pampano, Alvaro

论文摘要

riemannian 3空间形式的均保守表面$ n^3(ρ)$,是恒定的平均曲率(CMC)表面,或者旋转线性线性的Weingarten表面验证关系$3κ__1+κ__2= 0 $之间的主要曲率$κ_1$和$κ_1$和$κ_______2$。我们将非CMC双向辅助表面的轮廓曲线表征为合适的曲率能量的临界曲线。此外,使用这种表征,我们证明存在一个离散的双映射家族封闭的家族,即没有边界的紧凑型,在3季度圆形的$ s^3(ρ)$中,非CMC双守护式表面。但是,这些封闭的表面均未嵌入$ s^3(ρ)$中。

Biconservative surfaces of Riemannian 3-space forms $N^3(ρ)$, are either constant mean curvature (CMC) surfaces or rotational linear Weingarten surfaces verifying the relation $3κ_1+κ_2=0$ between their principal curvatures $κ_1$ and $κ_2$. We characterise the profile curves of the non-CMC biconservative surfaces as the critical curves for a suitable curvature energy. Moreover, using this characterisation, we prove the existence of a discrete biparametric family of closed, i.e. compact without boundary, non-CMC biconservative surfaces in the round 3-sphere, $S^3(ρ)$. However, none of these closed surfaces is embedded in $S^3(ρ)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源