论文标题

使用神经网络更深入地使用脑形态计量学

Going deeper with brain morphometry using neural networks

论文作者

Cruz, Rodrigo Santa, Lebrat, Léo, Bourgeat, Pierrick, Doré, Vincent, Dowling, Jason, Fripp, Jurgen, Fookes, Clinton, Salvado, Olivier

论文摘要

来自磁共振成像(MRI)的脑形态学是许多神经退行性疾病的合并生物标志物。该领域的最新进展表明,深层卷积神经网络可以在几秒钟内推断形态测量值。然而,设计模型的精度(平均曲率和厚度)仍然不令人满意。在本文中,我们提出了一个更准确,更有效的神经网络模型,用于脑形态计量学,名为Herstonnet。更具体地说,我们开发了一个基于3D RESNET的神经网络,可以直接从MRI中学习丰富的功能,通过预测不同分辨率的特征图中的形态计量测量,设计多尺度回归方案,并利用强大的优化方法避免质量差质量差并降低预测差异。结果,Herstonnet将现有方法提高了24.30%,从相关系数(协议度量)到FreeSurfer银色标准的同时保持竞争性运行时。

Brain morphometry from magnetic resonance imaging (MRI) is a consolidated biomarker for many neurodegenerative diseases. Recent advances in this domain indicate that deep convolutional neural networks can infer morphometric measurements within a few seconds. Nevertheless, the accuracy of the devised model for insightful bio-markers (mean curvature and thickness) remains unsatisfactory. In this paper, we propose a more accurate and efficient neural network model for brain morphometry named HerstonNet. More specifically, we develop a 3D ResNet-based neural network to learn rich features directly from MRI, design a multi-scale regression scheme by predicting morphometric measures at feature maps of different resolutions, and leverage a robust optimization method to avoid poor quality minima and reduce the prediction variance. As a result, HerstonNet improves the existing approach by 24.30% in terms of intraclass correlation coefficient (agreement measure) to FreeSurfer silver-standards while maintaining a competitive run-time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源