论文标题
边缘:一种抑制银河系自适应网格模拟中数值扩散的新方法
EDGE: A new approach to suppressing numerical diffusion in adaptive mesh simulations of galaxy formation
论文作者
论文摘要
我们引入了一种新方法,以减轻宇宙星系形成的自适应网状细化(AMR)模拟中的数值扩散,并研究其对模拟矮星银河系的影响,作为“边缘”项目的一部分。目标星系的最大圆速度为21 km/s,但在相对于流体动力网格相对于水力动力网格的区域中进化,该区域的移动最高为90 km/s。在没有任何缓解措施的情况下,扩散会软化喂养我们银河系的细丝。结果,气体在银河系周围的周围呈320 MYR周围的圆形培养基中均不固定,从而延迟了恒星形成的发作,直到冷却和倒塌最终在z = 9处触发了初始的starburst。使用遗传修饰,我们产生了“速度零”初始条件,在该条件下,网格相关流得到了强烈抑制。根据设计,变化并不能显着修改大规模结构或暗物质积聚历史记录。所得的模拟从z = 17开始恢复了恒星形成的更加物理,逐渐发作。虽然最后的恒星群体几乎是一致的($ 4.8 \ times 10^6 \,m_ \ odot $和$ 4.4 \ times 10^6 \,M_ \ odot $用于未修改和速度零零),而Z = 0 Dwarf Galaxies的动态和形态结构与Z = 0 dwarf Galaxies的动态和形态结构相同。我们的扩散抑制方法适用于任何AMR Zoom宇宙星系形成模拟,特别建议使用高红移的小星系。
We introduce a new method to mitigate numerical diffusion in adaptive mesh refinement (AMR) simulations of cosmological galaxy formation, and study its impact on a simulated dwarf galaxy as part of the 'EDGE' project. The target galaxy has a maximum circular velocity of 21 km/s but evolves in a region which is moving at up to 90 km/s relative to the hydrodynamic grid. In the absence of any mitigation, diffusion softens the filaments feeding our galaxy. As a result, gas is unphysically held in the circumgalactic medium around the galaxy for 320 Myr, delaying the onset of star formation until cooling and collapse eventually triggers an initial starburst at z=9. Using genetic modification, we produce 'velocity-zeroed' initial conditions in which the grid-relative streaming is strongly suppressed; by design, the change does not significantly modify the large scale structure or dark matter accretion history. The resulting simulation recovers a more physical, gradual onset of star formation starting at z=17. While the final stellar masses are nearly consistent ($4.8 \times 10^6\,M_\odot$ and $4.4\times 10^6\,M_\odot$ for unmodified and velocity-zeroed respectively), the dynamical and morphological structure of the z=0 dwarf galaxies are markedly different due to the contrasting histories. Our approach to diffusion suppression is suitable for any AMR zoom cosmological galaxy formation simulations, and is especially recommended for those of small galaxies at high redshift.