论文标题
在球体上的关节反卷积和盲源分离,并应用于放射性宪法
Joint deconvolution and blind source separation on the sphere with an application to radio-astronomy
论文作者
论文摘要
盲源分离是从多通道数据中提取相关信息的主要分析工具之一。虽然是中心,关节反卷积和盲源分离(DBSS)方法很少。为此,提出了DBSS算法创建的SDECGMCA。它旨在处理在球体上采样的数据,从而可以在射射线射击中进行大型数据分析。
Blind source separation is one of the major analysis tool to extract relevant information from multichannel data. While being central, joint deconvolution and blind source separation (DBSS) methods are scarce. To that purpose, a DBSS algorithm coined SDecGMCA is proposed. It is designed to process data sampled on the sphere, allowing large-field data analysis in radio-astronomy.