论文标题

双重约束深度半监督的耦合分解网络,具有丰富的先验

Dual-constrained Deep Semi-Supervised Coupled Factorization Network with Enriched Prior

论文作者

Zhang, Yan, Zhang, Zhao, Wang, Yang, Zhang, Zheng, Zhang, Li, Yan, Shuicheng, Wang, Meng

论文摘要

非负矩阵分解通常对于学习“基于浅”的零件表示形式非常有力,但是显然无法在基础和表示空间内发现深层的层次结构信息。在本文中,我们从技术上提出了一种新的基于先验的基于基于的双重约束深度半监督的耦合分解网络,称为DS2CF-NET,用于学习层次结构耦合表示。为了实现隐藏的深度特征,DS2CF-NET被建模为深层结构和几何结构受限的神经网络。具体而言,DS2CF-NET使用线性转换的多层设计深耦合分解架构,该构建耦合在每一层中更新碱基和新表示。为了提高学到的深层表示和深层系数的区分能力,我们的网络显然考虑通过联合深层调节的标签预测来丰富预测的先验,并将丰富的先前信息作为其他标签和结构约束。标签约束可以使同一标签的样品在新特征空间中具有相同的坐标,而结构约束则迫使每层系数矩阵为块 - diagonal,以便更准确地使用自我表达的标签传播的增强型先验。我们的网络还集成了自适应双圈学习,以通过最大程度地减少每个层中的重建错误来保留数据歧管和特征歧管的局部歧管结构。在几个真实数据库上进行的广泛实验表明,我们的DS2CF-NET可以获得表示和聚类的最新性能。

Nonnegative matrix factorization is usually powerful for learning the "shallow" parts-based representation, but it clearly fails to discover deep hierarchical information within both the basis and representation spaces. In this paper, we technically propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net, for learning the hierarchical coupled representations. To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network. Specifically, DS2CF-Net designs a deep coupled factorization architecture using multi-layers of linear transformations, which coupled updates the bases and new representations in each layer. To improve the discriminating ability of learned deep representations and deep coefficients, our network clearly considers enriching the supervised prior by the joint deep coefficients-regularized label prediction, and incorporates enriched prior information as additional label and structure constraints. The label constraint can enable the samples of the same label to have the same coordinate in the new feature space, while the structure constraint forces the coefficient matrices in each layer to be block-diagonal so that the enhanced prior using the self-expressive label propagation are more accurate. Our network also integrates the adaptive dual-graph learning to retain the local manifold structures of both the data manifold and feature manifold by minimizing the reconstruction errors in each layer. Extensive experiments on several real databases demonstrate that our DS2CF-Net can obtain state-of-the-art performance for representation learning and clustering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源