论文标题
分层消息图形神经网络
Hierarchical Message-Passing Graph Neural Networks
论文作者
论文摘要
图形神经网络(GNN)已成为使用图的重要方法,并越来越多地应用于众多域。然而,由于大多数现有的GNN模型都是基于平坦的消息通话机制,因此需要解决两个限制:(i)它们在编码跨越图形结构的长期信息方面成本高昂; (ii)他们无法在图表中的高阶邻域中编码特征,因为它们仅在原始图中的观察到的边缘上执行信息聚合。为了解决这两个问题,我们提出了一个新颖的层次结构消息图形神经网络框架。关键思想是生成一个层次结构,该结构将平面图中的所有节点重新组织为多级超级图,以及创新的内部和层间传播方式。派生的层次结构创建了连接遥远节点的快捷方式,因此可以通过消息传递有效地访问信息的远程交互,并将中级和宏观语义的语义纳入学习的节点表示。我们提出了第一个实施该框架的模型,称为层次结构 - 感知图形神经网络(HC-GNN),并在层次结构群落检测算法的帮助下。理论分析说明了HC-GNN在捕获远程信息的出色能力而不引入额外的额外计算复杂性的情况下。在跨导式,电感和少数射击设置下,HC-GNN可以在网络分析任务中胜过最先进的GNN模型,包括节点分类,链接预测和社区检测,在9个数据集上进行了经验实验。此外,模型分析进一步证明了HC-GNN面临图形稀疏性的鲁棒性以及合并不同GNN编码器的灵活性。
Graph Neural Networks (GNNs) have become a prominent approach to machine learning with graphs and have been increasingly applied in a multitude of domains. Nevertheless, since most existing GNN models are based on flat message-passing mechanisms, two limitations need to be tackled: (i) they are costly in encoding long-range information spanning the graph structure; (ii) they are failing to encode features in the high-order neighbourhood in the graphs as they only perform information aggregation across the observed edges in the original graph. To deal with these two issues, we propose a novel Hierarchical Message-passing Graph Neural Networks framework. The key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs, along with innovative intra- and inter-level propagation manners. The derived hierarchy creates shortcuts connecting far-away nodes so that informative long-range interactions can be efficiently accessed via message passing and incorporates meso- and macro-level semantics into the learned node representations. We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN), with the assistance of a hierarchical community detection algorithm. The theoretical analysis illustrates HC-GNN's remarkable capacity in capturing long-range information without introducing heavy additional computation complexity. Empirical experiments conducted on 9 datasets under transductive, inductive, and few-shot settings exhibit that HC-GNN can outperform state-of-the-art GNN models in network analysis tasks, including node classification, link prediction, and community detection. Moreover, the model analysis further demonstrates HC-GNN's robustness facing graph sparsity and the flexibility in incorporating different GNN encoders.