论文标题

准周期旋转链中的拓扑差距:数值和K理论分析

Topological Gaps in Quasi-Periodic Spin Chains: A Numerical and K-Theoretic Analysis

论文作者

Liu, Yifei, Santos, Lea F., Prodan, Emil

论文摘要

由准周期性自旋链模型支持的拓扑阶段及其庞大的边界原理通过数值和K理论方法研究。我们表明,对于非相关阶段和相关阶段,产生汉密尔顿人的操作员代数是非共同的托里,因此,准周期链显示出类似于两个及更高尺寸的量子霍尔效应的物理学。发现健壮的拓扑边缘模式是由相互作用强烈影响的,并且通常它们具有混合边缘和链偏置的结构。我们的发现是使用准周期模式作为绝热参数的Phason为拓扑旋转泵送的基础,其中选择性选择的量化磁化位可以从链的一个边缘传递到另一个边缘。

Topological phases supported by quasi-periodic spin-chain models and their bulk-boundary principles are investigated by numerical and K-theoretic methods. We show that, for both the un-correlated and correlated phases, the operator algebras that generate the Hamiltonians are non-commutative tori, hence the quasi-periodic chains display physics akin to the quantum Hall effect in two and higher dimensions. The robust topological edge modes are found to be strongly shaped by the interaction and, generically, they have hybrid edge-localized and chain-delocalized structures. Our findings lay the foundations for topological spin pumping using the phason of a quasi-periodic pattern as an adiabatic parameter, where selectively chosen quantized bits of magnetization can be transferred from one edge of the chain to the other.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源