论文标题
通过乘法突触中尖峰神经网络中的非线性计算
Nonlinear computations in spiking neural networks through multiplicative synapses
论文作者
论文摘要
大脑通过其复杂的尖峰神经元网络有效地执行非线性计算,但是如何完成此操作仍然难以捉摸。尽管非线性计算可以在尖峰神经网络中成功实施,但这需要监督培训,因此很难解释所得的连接性。相比之下,可以通过SPIKE编码网络(SCN)框架直接得出和理解任何以线性动力学系统形式的计算所需的连接性。这些网络还具有生物学上现实的活性模式,并且对细胞死亡具有很强的鲁棒性。在这里,我们扩展了SCN框架以直接实施任何多项式动力系统,而无需训练。这导致网络需要混合突触类型(快速,缓慢和乘法),我们将其称为乘法尖峰编码网络(MSCN)。使用MSCN,我们演示了如何直接为多个非线性动力学系统得出所需的连接性。我们还展示了如何使用仅使用配对乘法突触的耦合网络进行高阶多项式,并为每种突触类型提供预期的连接数量。总体而言,我们的工作展示了一种在尖峰神经网络中实现非线性计算的新方法,同时保持标准SCN的吸引力(鲁棒性,现实的活动模式和可解释的连接性)。最后,我们讨论了方法的生物学合理性,以及该方法的高精度和鲁棒性如何对神经形态计算感兴趣。
The brain efficiently performs nonlinear computations through its intricate networks of spiking neurons, but how this is done remains elusive. While nonlinear computations can be implemented successfully in spiking neural networks, this requires supervised training and the resulting connectivity can be hard to interpret. In contrast, the required connectivity for any computation in the form of a linear dynamical system can be directly derived and understood with the spike coding network (SCN) framework. These networks also have biologically realistic activity patterns and are highly robust to cell death. Here we extend the SCN framework to directly implement any polynomial dynamical system, without the need for training. This results in networks requiring a mix of synapse types (fast, slow, and multiplicative), which we term multiplicative spike coding networks (mSCNs). Using mSCNs, we demonstrate how to directly derive the required connectivity for several nonlinear dynamical systems. We also show how to carry out higher-order polynomials with coupled networks that use only pair-wise multiplicative synapses, and provide expected numbers of connections for each synapse type. Overall, our work demonstrates a novel method for implementing nonlinear computations in spiking neural networks, while keeping the attractive features of standard SCNs (robustness, realistic activity patterns, and interpretable connectivity). Finally, we discuss the biological plausibility of our approach, and how the high accuracy and robustness of the approach may be of interest for neuromorphic computing.