论文标题
凉爽巨人和超级巨星气氛的层析成像III。对Mira Star S Ori的VLTI/Amber观察的方法验证该方法
Tomography of cool giant and supergiant star atmospheres III. Validation of the method on VLTI/AMBER observations of the Mira star S Ori
论文作者
论文摘要
对AGB-Star气氛的结构和动力学的了解对于更好地了解群众损失至关重要。层压方法依赖于在恒星气氛中具有给定光学深度范围内形成的线形成线的光谱面具的设计,是为此目的的理想技术。它应用于Mira型AGB STAR S ORI的高分辨率光谱学VLTI/琥珀色观测值。首先,在造成断层膜面罩的波长下提取干涉视觉可见性,并适合从均匀磁盘模型计算的那些。这允许测量相应面罩探测的大气层的几何范围。然后,我们将观察到的大气扩展与可用的1D脉动法典模型和3D辐射流动力学Co5bold仿真测量的大气扩展进行了比较。我们发现,虽然S ori中的层造影面具探测的平均光学深度减小($ <\logτ_0> = -0.45 $,$ -1.45 $,$ -1.45 $,以及$ -2.45 $,从内部和最外层层到中层和最外层的层),这些层的最大直径从10.59 $ 0.59 $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ 0.094 $ \ \ \ \ \ \ $ -2.45 $。 14.08 $ \ pm $ 0.15 mas。当将断层扫描方法应用于1D和3D动态模型时,观察到类似的行为。因此,这项研究首次将光学和几何深度尺度之间的定量关系得出,当应用于Mira Star S Ori,或1D和3D动力学模型。在mira型恒星的背景下,光学深度和几何深度之间的联系的知识为推导冲击波传播速度开辟了道路,在这些恒星中无法直接观察到。
The knowledge of the structure and dynamics of AGB-star atmospheres is crucial to better understand the mass loss. The tomographic method, that relies on the design of spectral masks containing lines forming in given ranges of optical depths in the stellar atmosphere, is an ideal technique for this purpose. It is applied to high-resolution spectro-interferometric VLTI/AMBER observations of the Mira-type AGB star S Ori. First, the interferometric visibilities are extracted at wavelengths contributing to the tomographic masks and fitted to those computed from a uniform disk model. This allows the measurement of the geometrical extent of the atmospheric layer probed by the corresponding mask. Then, we compare the observed atmospheric extension with those measured from available 1D pulsation CODEX models and 3D radiative-hydrodynamics CO5BOLD simulations. We found that while the average optical depths probed by the tomographic masks in S Ori decrease (with $<\log τ_0> = -0.45$, $-1.45$, and $-2.45$ from the innermost to the central and outermost layers), the angular diameters of these layers increase, from 10.59 $\pm$ 0.09 mas through 11.84 $\pm$ 0.17 mas, up to 14.08 $\pm$ 0.15 mas. A similar behavior is observed when the tomographic method is applied to 1D and 3D dynamical models. Thus, this study derives, for the first time, a quantitative relation between optical- and geometrical-depth scales when applied to the Mira star S Ori, or to 1D and 3D dynamical models. In the context of Mira-type stars, the knowledge of the link between the optical and geometrical depths opens the way to derive the shock-wave propagation velocity, which can not be directly observed in these stars.