论文标题
同质组的$ k $ - 可行性的特征
Characterizations of $k$-rectifiability in homogenous groups
论文作者
论文摘要
A well known notion of $k$-rectifiable set can be formulated in any metric space using Lipschitz images of subsets of $\mathbb{R}^k$.当指标空间是一个任意同质群体时,我们证明了$ K $ - 重构的一些特征。特别是,我们表明A.E.存在$(k,\ mathbb {g})$的存在 - 近似切线组意味着$ k $ - retectifibility。
A well known notion of $k$-rectifiable set can be formulated in any metric space using Lipschitz images of subsets of $\mathbb{R}^k$. We prove some characterizations of $k$-rectifiability, when the metric space is an arbitrary homogeneous group. In particular, we show that the a.e. existence of the $(k,\mathbb{G})$-approximate tangent group implies $k$-rectifiability.