论文标题
询问有关空间的可定位性的电磁量子波动
Inquiring electromagnetic quantum fluctuations about the orientability of space
论文作者
论文摘要
可牙性是时空流形的重要拓扑特性。通常认为,对空间优势性的测试需要在整个3空间上进行旅程,以检查取向反向的路径。由于这样的全球探险是不可行的,因此提供了将物理实验的普遍性与本地箭头,违反CP和CPT不变性相结合的理论论点,以支持选择时间和空间定位的时空流形。我们表明,可以通过涉及量子电磁波动的局部物理效应来访问Minkowski时空的空间优势。为此,我们研究了Minkowski时空的这些波动下的带电粒子和电偶极子的运动,并具有可定向和不可定向的空间拓扑。我们在两个空间平坦的拓扑结构中得出了两个点状粒子的定向性指标的表达式。对于粒子,我们表明,可以通过对比指标的演变来区分不可取向拓扑。这表明可以通过电磁量子波动访问可验证性。关于如何局部探测Minkowski 3空间的定义性本质上的问题的答案在偶极子运动的研究中会产生。我们发现,偶极指标曲线表现出的特征反转模式是非定向性的签名。该结果清楚地表明,通过电磁波动下电偶极子的可定位指示曲线的反转模式,可以在局部公布空间不可定位。我们的发现为涉及量子电磁波动的可疑实验开辟了道路,以局部探测Minkowski时空的微观尺度上的空间可定义性。
Orientability is an important topological property of spacetime manifolds. It is generally assumed that a test for spatial orientability requires a journey across the whole 3-space to check for orientation-reversing paths. Since such a global expedition is not feasible, theoretical arguments that combine universality of physical experiments with local arrow of time, CP violation and CPT invariance are offered to support the choosing of time- and space-orientable spacetime manifolds. We show that it is possible to access spatial orientability of Minkowski spacetime through local physical effects involving quantum electromagnetic fluctuations. To this end, we study the motions of a charged particle and an electric dipole under these fluctuations in Minkowski spacetime with orientable and non-orientable spatial topologies. We derive expressions for an orientability indicator for both point-like particles in two spatially flat topologies. For the particle, we show that it is possible to distinguish the orientable from the non-orientable topology by contrasting the evolution of the indicators. This shows that it is possible to access orientability through electromagnetic quantum fluctuations.The answer to the question on how to locally probe the orientability of Minkowski 3-space intrinsically arises in the study of the dipole's motions. We find that a characteristic inversion pattern exhibited by the dipole indicator curves is a signature of non-orientability. This result makes it clear that it is possible to locally unveil spatial non-orientability by the inversion pattern of orientability indicator curves of an electric dipole under electromagnetic fluctuations. Our findings open the way to a conceivable experiment involving quantum electromagnetic fluctuations to locally probe the spatial orientability on the microscopic scale of Minkowski spacetime.