论文标题
用于量子计算的Rodeo算法
Rodeo Algorithm for Quantum Computing
论文作者
论文摘要
我们提出了一种随机量子计算算法,该算法可以在选定的能量间隔$ [E-ε,E+ε] $中准备任何量子汉密尔顿的特征向量。为了通过抑制因子$δ$减少所有其他特征向量的光谱重量,所需的计算工作量缩放为$ o [| \logΔ|/(pε)] $,其中$ p $是初始状态与目标特征向量的初始状态的平方重叠。我们称之为牛仔竞技算法的方法使用辅助矩形来控制汉密尔顿减去一些可调参数$ e $的时间演变。通过每个辅助量子标准测量,特征向量的幅度乘以随机因子的乘积,该因子取决于其能量与$ e $的近距离。以这种方式,我们以测量数量的指数准确性将其聚合到目标特征向量。除了制备特征向量外,该方法还可以计算哈密顿量的完整范围。我们用几个示例说明了性能。对于能量特征值确定错误$ε$,计算缩放为$ o [(\logε)^2/(pε)] $。对于本征态制备,计算缩放为$ O(\logΔ/p)$,其中$δ$是残留矢量正交成分的幅度。本征态制备的速度呈指数级的速度比相位估计或绝热进化的速度要快。
We present a stochastic quantum computing algorithm that can prepare any eigenvector of a quantum Hamiltonian within a selected energy interval $[E-ε, E+ε]$. In order to reduce the spectral weight of all other eigenvectors by a suppression factor $δ$, the required computational effort scales as $O[|\log δ|/(p ε)]$, where $p$ is the squared overlap of the initial state with the target eigenvector. The method, which we call the rodeo algorithm, uses auxiliary qubits to control the time evolution of the Hamiltonian minus some tunable parameter $E$. With each auxiliary qubit measurement, the amplitudes of the eigenvectors are multiplied by a stochastic factor that depends on the proximity of their energy to $E$. In this manner, we converge to the target eigenvector with exponential accuracy in the number of measurements. In addition to preparing eigenvectors, the method can also compute the full spectrum of the Hamiltonian. We illustrate the performance with several examples. For energy eigenvalue determination with error $ε$, the computational scaling is $O[(\log ε)^2/(p ε)]$. For eigenstate preparation, the computational scaling is $O(\log Δ/p)$, where $Δ$ is the magnitude of the orthogonal component of the residual vector. The speed for eigenstate preparation is exponentially faster than that for phase estimation or adiabatic evolution.