论文标题

推荐系统的规则指导的图神经网络

Rule-Guided Graph Neural Networks for Recommender Systems

论文作者

Lyu, Xinze, Li, Guangyao, Huang, Jiacheng, Hu, Wei

论文摘要

为了减轻推荐系统中的协作过滤引起的冷启动问题,知识图(kgs)越来越多地用来用作辅助资源。但是,与KGS合并的现有作品无法捕获用户和项目之间的明确远程语义,同时考虑项目之间的各种连接。在本文中,我们提出了RGREC,该RGREC结合了规则学习和图形神经网络(GNN)以供推荐。 RGREC首先将项目映射到KGS中的相应实体,并将用户添加为新实体。然后,它会自动学习规则以建模显式的远程语义,并通过聚集来捕获实体之间的连接以更好地编码各种信息。我们显示了RGREC在三个现实世界数据集上的有效性。特别是,与仅使用任何一种方法的方法相比,规则学习和GNN的组合可以实现实质性改进。

To alleviate the cold start problem caused by collaborative filtering in recommender systems, knowledge graphs (KGs) are increasingly employed by many methods as auxiliary resources. However, existing work incorporated with KGs cannot capture the explicit long-range semantics between users and items meanwhile consider various connectivity between items. In this paper, we propose RGRec, which combines rule learning and graph neural networks (GNNs) for recommendation. RGRec first maps items to corresponding entities in KGs and adds users as new entities. Then, it automatically learns rules to model the explicit long-range semantics, and captures the connectivity between entities by aggregation to better encode various information. We show the effectiveness of RGRec on three real-world datasets. Particularly, the combination of rule learning and GNNs achieves substantial improvement compared to methods only using either of them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源