论文标题
非热带系统中的非Bloch带理论和散装对应关系
Non-Bloch band theory and bulk-edge correspondence in non-Hermitian systems
论文作者
论文摘要
在本文中,我们在一维非弱点紧密结合系统中回顾了我们的非Bloch乐队理论。在我们的理论中,可以表明,在非热系统中,确定了布里渊区,以便在大型开放式链中重现连续能带。通过使用简单的模型,我们解释了非Bloch带理论的概念以及计算Brillouin区域的方法。特别是,对于非热的su-schrieffer-heeger模型,可以在我们的理论和拓扑边缘状态的存在下定义的拓扑不变性之间建立散装对应关系。
In this paper, we review our non-Bloch band theory in one-dimensional non-Hermitian tight-binding systems. In our theory, it is shown that in non-Hermitian systems, the Brillouin zone is determined so as to reproduce continuum energy bands in a large open chain. By using simple models, we explain the concept of the non-Bloch band theory and the method to calculate the Brillouin zone. In particular, for the non-Hermitian Su-Schrieffer-Heeger model, the bulk-edge correspondence can be established between the topological invariant defined from our theory and existence of the topological edge states.