论文标题
气溶胶动力学的凝血方程
Coagulation equations for aerosol dynamics
论文作者
论文摘要
二元凝结是气溶胶动力学中的重要过程,通过该过程,两个颗粒合并形成更大的粒子。随着时间的推移,粒度的分布可以通过所谓的Smoluchowski的凝结方程来描述。该集成差方程表现出复杂的非本地行为,这在很大程度上取决于所考虑的凝血率。我们首先讨论了Smoluchowski方程的适当性结果,其中大量的凝结核以及在存在小颗粒来源的情况下,固定溶液的存在和不存在。存在结果使用Schauder固定点定理,而不存在的结果依赖于问题的通量公式以及对具有恒定通量的固定溶液衰减的幂律估计。然后,我们考虑更一般的设置。我们认为颗粒可能由不同的化学物质构成,这导致了描述粒子组成分布的多组分方程。在最简单的情况下,通过使用生成函数,我们获得了明确的解决方案。使用溶液的近似值,我们观察到,质量在大小和大尺寸的大小空间中沿着直线定位。
Binary coagulation is an important process in aerosol dynamics by which two particles merge to form a larger one. The distribution of particle sizes over time may be described by the so-called Smoluchowski's coagulation equation. This integrodifferential equation exhibits complex non-local behaviour that strongly depends on the coagulation rate considered. We first discuss well-posedness results for the Smoluchowski's equation for a large class of coagulation kernels as well as the existence and nonexistence of stationary solutions in the presence of a source of small particles. The existence result uses Schauder fixed point theorem, and the nonexistence result relies on a flux formulation of the problem and on power law estimates for the decay of stationary solutions with a constant flux. We then consider a more general setting. We consider that particles may be constituted by different chemicals, which leads to multi-component equations describing the distribution of particle compositions. We obtain explicit solutions in the simplest case where the coagulation kernel is constant by using a generating function. Using an approximation of the solution we observe that the mass localizes along a straight line in the size space for large times and large sizes.