论文标题

Abelian和Abelian和随机BTW模型中的on STES和流出分布

Onsets and Outflow Distributions in Abelian and Stochastic BTW Models

论文作者

Pramanick, Suman

论文摘要

我们通过计算机模拟研究了Bak Tang Wiesenfeld(BTW)模型中散装雪崩和边界流出的发作以及随机BTW模型。我们还研究了这两个发作时间对系统大小的依赖性。我们观察到,这两个发病时间遵循简单的幂律对系统尺寸的依赖。我们估计了这些幂律指数的BTW模型和随机BTW模型。我们观察到系统密度的演变,并估计BTW和随机BTW模型的自组织临界(SOC)状态密度。我们研究了BTW和随机BTW模型的边界分布,并表明边界分布不遵循幂律分布。在本文中,所有研究都是针对一维,二维和三维病例进行的。

We study the onset of bulk avalanches and boundary outflow in the Bak Tang Wiesenfeld (BTW) model and in the stochastic BTW models by computer simulation. We also study the dependency of these two onset times on system sizes. We observe that these two onset times follow simple power-law dependency on system sizes. We estimate these power-law exponents both for the BTW model and for the stochastic BTW models. We observe the evolution of the density of the system and estimate self-organized critical (SOC) state density both for BTW and stochastic BTW models. We study the boundary distribution for BTW and stochastic BTW models and show that boundary distribution does not follow a power-law distribution. In this paper, all the investigations are done for one-dimensional, two-dimensional, and three-dimensional cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源