论文标题

具有耦合电荷盘的GHz状态的动态生成

Dynamic generation of GHZ states with coupled charge qubits

论文作者

Nogueira, J., Oliveira, P. A., Souza, F. M., Sanz, L.

论文摘要

在本文中,我们在带电的量子点的实验背景下,介绍了Greenberger-Horne-Zeilinger类的纯最大纠缠状态的原则证明。每个量子都必须识别为一对量子点,共享一个多余的电子,并通过隧道结合。电子 - 电子相互作用是考虑到量子位之间的耦合的原因。相干隧道事件与多体相互作用之间的相互作用导致高度纠缠状态的形成。我们首先处理具有三对量子点的系统中编码四个Qubit的问题,以及对精确量子动力学的数值分析,以找到生成GHz状态的条件。有效的两级模型阐明了动力学背后的高阶隧道过程的作用。在此过程中量化了主要的分解过程的作用,即电荷的作用。然后,我们在$ n $ Qubit的情况下评估GHz状态动态生成的物理要求及其挑战。

In this paper, we present a proof-of-principle of the formation of pure maximally entangled states from the Greenberger-Horne-Zeilinger class, in the experimental context of charged quantum dots. Each qubit must be identified as a pair of quantum dots, sharing an excess electron, coupled by tunneling. The electron-electron interaction is accounted for and is responsible for the coupling between the qubits. The interplay between coherent tunneling events and many-body interaction gives rise to the formation of highly entangled states. We begin by treating the problem of encoding three-qubits in a system with three pairs of quantum dots, and the numerical analysis of the exact quantum dynamics to find the conditions for the generation of the GHZ states. An effective two-level model sheds light on the role of a high-order tunneling process behind the dynamics. The action of the main decoherence process, the charge dephasing, is quantified in the process. We then evaluate the physical requirements for the dynamical generation of GHZ states in a $N$ qubit scenario, and its challenges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源