论文标题
拉普拉斯频谱,基尔chhoff指数和线性七型网络的复杂性
The Laplacian spectrum, Kirchhoff index and complexity of the linear heptagonal networks
论文作者
论文摘要
令$ h_n $为$ 2N $七型的线性七型网络。我们研究线性六角网络的结构属性和特征值。根据$ h_n $的拉普拉斯多项式,我们使用分解定理。因此,$ h_n $的laplacian光谱是由一对矩阵的特征值创建的:$ l_a $和$ l_s $ of订单号$ 5N+1 $和$ 4N+1 $。根据$ L_A $和$ L_S $的特征多项式的根和系数,我们不仅获得了Kirchhoff索引的显式形式,而且还获得了$ H_N $的相应总复杂性。
Let $H_n$ be the linear heptagonal networks with $2n$ heptagons. We study the structure properties and the eigenvalues of the linear heptagonal networks. According to the Laplacian polynomial of $H_n$, we utilize the decomposition theorem. Thus, the Laplacian spectrum of $H_n$ is created by eigenvalues of a pair of matrices: $L_A$ and $L_S$ of order number $5n+1$ and $4n+1$, respectively. On the basis of the roots and coefficients of their characteristic polynomials of $L_A$ and $L_S$, we not only get the explicit forms of Kirchhoff index, but also corresponding total complexity of $H_n$.