论文标题
分布式可变基线立体声来自两个无人机
Distributed Variable-Baseline Stereo SLAM from two UAVs
论文作者
论文摘要
VIO已被广泛使用和研究,以控制和帮助机器人导航的自动化,尤其是在没有绝对位置测量(例如GPS)的情况下。但是,当现场可观察到的地标远离机器人的传感器套件时,在高空飞行中是这种情况时,估计值的忠诚度和度量标准量表的可观察性极大地降低了这些方法。为了解决此问题,在本文中,我们采用了两个配备了一台单眼相机和一台IMU的无人机,以利用他们使用UWB模块在船上使用它们之间的视图重叠和相对距离测量值,以启用协作VIO。特别是,我们提出了一种新颖的,分布式的融合方案,使能够从两个无人机的可调节基线的虚拟立体相机钻机形成。为了自主控制\ gls {UAV}代理,我们提出了一个分散的协作估算方案,每个代理都持有自己的本地地图,达到平均姿势估计延迟为11ms,同时确保通过基于共识的优化来确保代理估计的一致性。在对影像学模拟进行了彻底的评估之后,我们证明了高空飞行高达160m的方法的有效性,超出了最先进的VIO方法的能力。最后,我们显示了积极地在固定目标基线上积极调整基线的优势,从而将实验中的误差降低了两个。
VIO has been widely used and researched to control and aid the automation of navigation of robots especially in the absence of absolute position measurements, such as GPS. However, when observable landmarks in the scene lie far away from the robot's sensor suite, as it is the case at high altitude flights, the fidelity of estimates and the observability of the metric scale degrades greatly for these methods. Aiming to tackle this issue, in this article, we employ two UAVs equipped with one monocular camera and one IMU each, to exploit their view overlap and relative distance measurements between them using UWB modules onboard to enable collaborative VIO. In particular, we propose a novel, distributed fusion scheme enabling the formation of a virtual stereo camera rig with adjustable baseline from the two UAVs. In order to control the \gls{uav} agents autonomously, we propose a decentralized collaborative estimation scheme, where each agent hold its own local map, achieving an average pose estimation latency of 11ms, while ensuring consistency of the agents' estimates via consensus based optimization. Following a thorough evaluation on photorealistic simulations, we demonstrate the effectiveness of the approach at high altitude flights of up to 160m, going significantly beyond the capabilities of state-of-the-art VIO methods. Finally, we show the advantage of actively adjusting the baseline on-the-fly over a fixed, target baseline, reducing the error in our experiments by a factor of two.