论文标题
广义多输出高斯流程审查回归
Generalized Multi-Output Gaussian Process Censored Regression
论文作者
论文摘要
当对审查观测值进行建模时,当前回归方法中的典型方法是使用审查的高斯(即Tobit)模型来描述条件输出分布。在本文中,与缺少数据一样,我们认为利用多个输出之间的相关性可以使模型能够更好地解决审查数据引入的偏差。为此,我们引入了一个异质的多输出高斯工艺模型,该模型将GPS的非参数灵活性与能够在输入依赖性噪声条件下利用相关输出的信息来利用信息。为了解决由此产生的推论的棘手性,我们进一步设计了一个与边缘对数可能适合随机优化的差异结合。我们对其他生成模型进行了经验评估,以审查合成和现实世界任务的数据,并进一步显示如何将其推广以处理任意可能性功能。结果表明,增加的灵活性如何使我们的模型更好地估计潜在复杂的审查动力学下的基本未审核(即真实)过程。
When modelling censored observations, a typical approach in current regression methods is to use a censored-Gaussian (i.e. Tobit) model to describe the conditional output distribution. In this paper, as in the case of missing data, we argue that exploiting correlations between multiple outputs can enable models to better address the bias introduced by censored data. To do so, we introduce a heteroscedastic multi-output Gaussian process model which combines the non-parametric flexibility of GPs with the ability to leverage information from correlated outputs under input-dependent noise conditions. To address the resulting inference intractability, we further devise a variational bound to the marginal log-likelihood suitable for stochastic optimization. We empirically evaluate our model against other generative models for censored data on both synthetic and real world tasks and further show how it can be generalized to deal with arbitrary likelihood functions. Results show how the added flexibility allows our model to better estimate the underlying non-censored (i.e. true) process under potentially complex censoring dynamics.