论文标题
词典产品图的超级连通性
Super connectivity of lexicographic product graphs
论文作者
论文摘要
对于图$ g $,$ k(g)$表示其连接性。如果每个最小顶点切割都隔离一个顶点,则图将超级连接。另外,$ k_ {1} $ - 连接图的连接性是最小数量的顶点数量,其删除给出了无隔离顶点的断开图。本文为超级连接性提供了界限,$ k_ {1} $ - 两个图的词典产物的连接性。
For a graph $G$, $k(G)$ denotes its connectivity. A graph is super connected if every minimum vertex-cut isolates a vertex. Also $k_{1}$-connectivity of a connected graph is the minimum number of vertices whose deletion gives a disconnected graph without isolated vertices. This paper provides bounds for the super connectivity and $k_{1}$-connectivity of the lexicographic product of two graphs.