论文标题
$ {\ cal n} = 4 $更高的旋转代数,用于通用$μ$参数
The ${\cal N}=4$ Higher Spin Algebra for Generic $μ$ Parameter
论文作者
论文摘要
$ {\ cal n} = 4 $ superspin $ s $的自旋发电机在$ ads_3 $ ads_3 $ vasiliev较高旋转理论的矩阵概括方面,在nonZero $ $ $上(这等同于't hooft like coupling coupling constants $λ$)。在本文中,通过计算这些$ {\ cal n}之间的(抗)换向器= 4 $较低的旋转生成器$ s_1 $和$ s_1 $和$ s_2 $($ s_1+s_1+s_2 \ leq 11 $),我们确定完整的$ {\ cal n} = 4 $ forme for Generic $ $ $。三种结构常数包含两个不同的广义超几何函数的线性组合。在转换$μ\ leftrightArrow(1-μ)$之前,这些结构常数保持不变。我们已经检查了上述$ {\ cal n} = 4 $更高的自旋代数包含$ {\ cal n} = 2 $较高的旋转代数,作为一个subgerbra,是弗拉德金(Fradkin)和班克斯基(Linetsky)在不久前发现的。
The ${\cal N}=4$ higher spin generators for general superspin $s$ in terms of oscillators in the matrix generalization of $AdS_3$ Vasiliev higher spin theory at nonzero $μ$ (which is equivalent to the 't Hooft-like coupling constant $λ$) were found previously. In this paper, by computing the (anti)commutators between these ${\cal N}=4$ higher spin generators for low spins $s_1$ and $s_2$ ($s_1+s_2 \leq 11$) explicitly, we determine the complete ${\cal N}=4$ higher spin algebra for generic $μ$. The three kinds of structure constants contain the linear combination of two different generalized hypergeometric functions. These structure constants remain the same under the transformation $μ\leftrightarrow (1-μ)$ up to signs. We have checked that the above ${\cal N}=4$ higher spin algebra contains the ${\cal N}=2$ higher spin algebra, as a subalgebra, found by Fradkin and Linetsky some time ago.