论文标题
了解单个单元在深神网络中的作用
Understanding the Role of Individual Units in a Deep Neural Network
论文作者
论文摘要
深度神经网络擅长寻找层次表示,这些表示可以解决大型数据集的复杂任务。我们如何理解这些学识渊博的表示?在这项工作中,我们提出网络解剖,这是一个分析框架,用于系统地识别图像分类和图像生成网络中各个隐藏单元的语义。首先,我们分析了在场景分类中训练的卷积神经网络(CNN),并发现与各种对象概念相匹配的单元。我们发现证据表明该网络已经学习了许多在分类场景类中起着至关重要的作用的对象类。其次,我们使用类似的分析方法来分析经过训练以生成场景的生成对抗网络(GAN)模型。通过分析当激活或停用的一组单元集时所做的更改,我们发现可以在适应上下文时从输出场景中添加对象并从输出场景中删除。最后,我们将分析框架应用于理解对抗性攻击和语义图像编辑。
Deep neural networks excel at finding hierarchical representations that solve complex tasks over large data sets. How can we humans understand these learned representations? In this work, we present network dissection, an analytic framework to systematically identify the semantics of individual hidden units within image classification and image generation networks. First, we analyze a convolutional neural network (CNN) trained on scene classification and discover units that match a diverse set of object concepts. We find evidence that the network has learned many object classes that play crucial roles in classifying scene classes. Second, we use a similar analytic method to analyze a generative adversarial network (GAN) model trained to generate scenes. By analyzing changes made when small sets of units are activated or deactivated, we find that objects can be added and removed from the output scenes while adapting to the context. Finally, we apply our analytic framework to understanding adversarial attacks and to semantic image editing.