论文标题
相对完美的格林伯格变换和循环类地图
The relatively perfect Greenberg transform and cycle class maps
论文作者
论文摘要
鉴于在完整的混合特性和完美残留场的完整离散评估环上的方案,Greenberg变换比特殊纤维更厚的残留场更厚。在本文中,我们将将这种转换推广到不完美的残基字段。然后,我们将构建一种应用于该半亚伯利亚品种的Néron模型的广义格林伯格变换上定义的一定类型的循环类图,该变换的价值是由Kato和第二作者定义的相对完美的附近循环函数。
Given a scheme over a complete discrete valuation ring of mixed characteristic with perfect residue field, the Greenberg transform produces a new scheme over the residue field thicker than the special fiber. In this paper, we will generalize this transform to the case of imperfect residue field. We will then construct a certain kind of cycle class map defined on this generalized Greenberg transform applied to the Néron model of a semi-abelian variety, which takes values in the relatively perfect nearby cycle functor defined by Kato and the second author.