论文标题
直接预测具有欧几里得神经网络状态状态的声子密度
Direct prediction of phonon density of states with Euclidean neural networks
论文作者
论文摘要
机器学习在材料设计,发现和财产预测方面具有巨大的力量。但是,尽管机器学习在预测离散属性方面取得了成功,但对于连续的属性预测仍然存在挑战。由于晶体学对称性的考虑和数据稀缺,晶体固体中的挑战加剧了。在这里,我们仅使用原子种和位置作为输入来证明状态的声子密度的直接预测。我们应用欧几里得神经网络,通过构造与3D旋转,翻译和倒置相等,从而捕获完整的晶体对称性,并使用一小部分$ \ sim 10^{3} $示例具有超过64种原子的示例。我们的预测模型重现了实验数据的关键特征,甚至可以推广到具有看不见元素的材料,并且自然适合有效预测合金系统而无需额外的计算成本。我们通过预测广泛的高音调特异性热容量材料来证明我们的网络潜力。我们的工作表明了一种有效的方法来探索材料的声子结构,并可以进一步筛选高性能的热存储材料和声子介导的超导体。
Machine learning has demonstrated great power in materials design, discovery, and property prediction. However, despite the success of machine learning in predicting discrete properties, challenges remain for continuous property prediction. The challenge is aggravated in crystalline solids due to crystallographic symmetry considerations and data scarcity. Here we demonstrate the direct prediction of phonon density of states using only atomic species and positions as input. We apply Euclidean neural networks, which by construction are equivariant to 3D rotations, translations, and inversion and thereby capture full crystal symmetry, and achieve high-quality prediction using a small training set of $\sim 10^{3}$ examples with over 64 atom types. Our predictive model reproduces key features of experimental data and even generalizes to materials with unseen elements,and is naturally suited to efficiently predict alloy systems without additional computational cost. We demonstrate the potential of our network by predicting a broad number of high phononic specific heat capacity materials. Our work indicates an efficient approach to explore materials' phonon structure, and can further enable rapid screening for high-performance thermal storage materials and phonon-mediated superconductors.