论文标题

有关不可压缩的Navier-Stokes方程的Chorin投影方法的融合的更多信息

More on convergence of Chorin's projection method for incompressible Navier-Stokes equations

论文作者

Maeda, Masataka, Soga, Kohei

论文摘要

kuroki和soga [numer。数学。 2020年]证明了Chorin的完全离散投影方法,最初由A. J. Chorin [Math]引入。 comp。 1969],在任意固定时间间隔内无条件地解决和收敛,以与具有任意外力的有界域上不可压缩的Navier-Stokes方程的Leray-Hopf弱解。本文是Churoki-Soga的作品的延续。我们显示了我们方案的时间全球溶解度和收敛性; $ l^2 $ -ERROR估算平滑精确解决方案中的计划;将该方案应用于问题,以时间周期性的外力来研究时间周期性(leray-hopf弱)解决方案,长期行为,错误估计等。

Kuroki and Soga [Numer. Math. 2020] proved that a version of Chorin's fully discrete projection method, originally introduced by A. J. Chorin [Math. Comp. 1969], is unconditionally solvable and convergent within an arbitrary fixed time interval to a Leray-Hopf weak solution of the incompressible Navier-Stokes equations on a bounded domain with an arbitrary external force. This paper is a continuation of Kuroki-Soga's work. We show time-global solvability and convergence of our scheme; $L^2$-error estimates for the scheme in the class of smooth exact solutions; application of the scheme to the problem with a time-periodic external force to investigate time-periodic (Leray-Hopf weak) solutions, long-time behaviors, error estimates, etc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源