论文标题

无监督的深度学习框架,通过对表示学习和基于GMM的建模的整合优化

An unsupervised deep learning framework via integrated optimization of representation learning and GMM-based modeling

论文作者

Wang, Jinghua, Jiang, Jianmin

论文摘要

尽管有监督的深度学习在一系列应用程序中取得了巨大的成功,但相对较少的工作研究了从未标记的数据中发现知识。在本文中,我们提出了一个无监督的深度学习框架,以解决现有深度学习技术需要大量标记的数据集以完成培训过程的问题。我们提出的基于深度表示和GMM(高斯混合模型)的深层建模的联合学习的新原理,因此提出了一个集成的目标函数以促进原理。与在类似领域的现有工作相比,我们的目标功能具有两个学习目标,这些目标被创建为共同优化,以从未标记的数据集中获得最佳的无监督学习和知识发现。同时最大化第一个目标使GMM能够实现数据表示的最佳建模,并且每个高斯组件都对应于紧凑型群集,但最大化第二项将增强高斯组件的可分离性,从而增强群间距离。结果,簇的紧凑性通过降低集群内距离可显着增强,并通过增加集群间距离来提高可分离性。广泛的实验结果表明,与基准方法相比,提出的方法可以改善聚类性能。

While supervised deep learning has achieved great success in a range of applications, relatively little work has studied the discovery of knowledge from unlabeled data. In this paper, we propose an unsupervised deep learning framework to provide a potential solution for the problem that existing deep learning techniques require large labeled data sets for completing the training process. Our proposed introduces a new principle of joint learning on both deep representations and GMM (Gaussian Mixture Model)-based deep modeling, and thus an integrated objective function is proposed to facilitate the principle. In comparison with the existing work in similar areas, our objective function has two learning targets, which are created to be jointly optimized to achieve the best possible unsupervised learning and knowledge discovery from unlabeled data sets. While maximizing the first target enables the GMM to achieve the best possible modeling of the data representations and each Gaussian component corresponds to a compact cluster, maximizing the second term will enhance the separability of the Gaussian components and hence the inter-cluster distances. As a result, the compactness of clusters is significantly enhanced by reducing the intra-cluster distances, and the separability is improved by increasing the inter-cluster distances. Extensive experimental results show that the propose method can improve the clustering performance compared with benchmark methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源