论文标题
具有一维模量空间的K3表面的非惊型自动形态
Non-symplectic automorphisms of K3 surfaces with one-dimensional moduli space
论文作者
论文摘要
K3的模量空间$ x $带有纯粹的非晶格自动形态$σ$ $ n \ geq 2 $的$σ$,当$φ(n)= 8 $或$ 10 $时,正是一维。在本文中,我们对此类模量空间的最大尺寸的不可约组件的非常一般成员的$(x,σ)$进行分类并给出明确的方程式。特别是我们表明,有一个独特的一维组件,$ n = 20,22、24 $,三个不可减至的组件,$ n = 15 $,在其余情况下有两个组件。
The moduli space of K3 surfaces $X$ with a purely non-symplectic automorphism $σ$ of order $n\geq 2$ is one dimensional exactly when $φ(n)=8$ or $10$. In this paper we classify and give explicit equations for the very general members $(X,σ)$ of the irreducible components of maximal dimension of such moduli spaces. In particular we show that there is a unique one-dimensional component for $n=20,22, 24$, three irreducible components for $n=15$ and two components in the remaining cases.