论文标题

风险敏感的顺序动作控制,具有多模式的人类轨迹预测,以实现安全人群相互作用

Risk-Sensitive Sequential Action Control with Multi-Modal Human Trajectory Forecasting for Safe Crowd-Robot Interaction

论文作者

Nishimura, Haruki, Ivanovic, Boris, Gaidon, Adrien, Pavone, Marco, Schwager, Mac

论文摘要

本文介绍了一个新颖的在线框架,以基于风险敏感的随机最佳控制,用于安全的人群互动,其中该风险是由熵风险措施建模的。基于抽样的模型预测控制依赖于该风险度量的模式插入梯度优化,以及轨迹++(一种最新的生成模型,可为多种相互作用剂提供多模式概率轨迹预测。我们的模块化方法将人群 - 机器人的交互分解为基于学习的预测和基于模型的控制,这与端到端策略学习方法相比是有利的,因为它允许在运行时指定机器人的所需行为。特别是,我们表明机器人通过改变风险灵敏度参数来表现出不同的相互作用行为。一项模拟研究和现实世界实验表明,所提出的在线框架可以完成安全有效的导航,同时避免与现场50多人发生碰撞。

This paper presents a novel online framework for safe crowd-robot interaction based on risk-sensitive stochastic optimal control, wherein the risk is modeled by the entropic risk measure. The sampling-based model predictive control relies on mode insertion gradient optimization for this risk measure as well as Trajectron++, a state-of-the-art generative model that produces multimodal probabilistic trajectory forecasts for multiple interacting agents. Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control, which is advantageous compared to end-to-end policy learning methods in that it allows the robot's desired behavior to be specified at run time. In particular, we show that the robot exhibits diverse interaction behavior by varying the risk sensitivity parameter. A simulation study and a real-world experiment show that the proposed online framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源