论文标题
不可压缩的拓扑孤子
Incompressible topological solitons
论文作者
论文摘要
我们发现了一类新的拓扑孤子。这些孤子可以存在于无限体积的空间中,例如,例如$ \ mathbb {r}^n $,但不能将它们放在任何有限的体积中,因为所得的正式解决方案具有无限的能量。因此,这些对象被解释为完全不可压缩的孤子。 首先,我们考虑的(1+1)在具有非标准动力学项的理论中的(1+1)尺寸的扭结,或者等效地,在所谓的失控(或无效)电位的模型中。但是不可压缩的孤子也存在于更高的维度。作为(3+1)维度的特定示例,我们研究了介电延伸中的天际,最小和BPS天际模型。在后一种情况下,天空的物质描述了完全不可压缩的拓扑完美流体。
We discover a new class of topological solitons. These solitons can exist in a space of infinite volume like, e.g., $\mathbb{R}^n$, but they cannot be placed in any finite volume, because the resulting formal solutions have infinite energy. These objects are, therefore, interpreted as totally incompressible solitons. As a first, particular example we consider (1+1) dimensional kinks in theories with a nonstandard kinetic term or, equivalently, in models with the so-called runaway (or vacummless) potentials. But incompressible solitons exist also in higher dimensions. As specific examples in (3+1) dimensions we study Skyrmions in the dielectric extensions both of the minimal and the BPS Skyrme models. In the the latter case, the skyrmionic matter describes a completely incompressible topological perfect fluid.