论文标题
关于公共密钥加密的芦苇 - 固体代码的子空间子代码的安全性
On the security of subspace subcodes of Reed-Solomon codes for public key encryption
论文作者
论文摘要
本文讨论了使用芦苇 - 固体代码的子空间子代码的类似McEliece的加密计划的安全性,即,芦苇 - 索隆代码的子代码的子代码在$ \ Mathbb {f} _ {q^m} $中,其条目在于固定的$ \ Mathbb {Mathbb {f} $ -sub { $ \ mathbb {f} _ {q^m} $。这些代码似乎是GOPPA和备用代码的自然概括,并在设计基于代码的加密方案方面具有更广泛的灵活性。为了进行安全分析,我们在称为“扭曲产品”的代码上引入了一个新操作,该代码在所选的$ \ mathbb {f} _q $ -subspaces具有大于$ M/2 $的尺寸后,在此类子空间子代码上产生多项式时间区分。从这个杰出者中,我们建立了一个有效的攻击,特别是由于Khathuria,Rosenthal和Weger而引起的最新提案的某些参数。
This article discusses the security of McEliece-like encryption schemes using subspace subcodes of Reed-Solomon codes, i.e. subcodes of Reed-Solomon codes over $\mathbb{F}_{q^m}$ whose entries lie in a fixed collection of $\mathbb{F}_q$-subspaces of $\mathbb{F}_{q^m}$. These codes appear to be a natural generalisation of Goppa and alternant codes and provide a broader flexibility in designing code based encryption schemes. For the security analysis, we introduce a new operation on codes called the twisted product which yields a polynomial time distinguisher on such subspace subcodes as soon as the chosen $\mathbb{F}_q$-subspaces have dimension larger than $m/2$. From this distinguisher, we build an efficient attack which in particular breaks some parameters of a recent proposal due to Khathuria, Rosenthal and Weger.