论文标题

通过上下文化的常识知识改善机器阅读理解

Improving Machine Reading Comprehension with Contextualized Commonsense Knowledge

论文作者

Sun, Kai, Yu, Dian, Chen, Jianshu, Yu, Dong, Cardie, Claire

论文摘要

在本文中,我们旨在提取常识知识以改善机器阅读理解。我们建议通过将结构化知识置于上下文中,而不是依靠预定义的关系集,以隐式表示关系,我们称其为上下文化的知识。每条上下文化的知识都由一对相互关联的口头和非语言信息组成,这些言语和非语言信息是从脚本中提取的,以及它们作为上下文的场景,以隐式表示言语和非语言信息之间的关系,这些信息最初是由脚本中不同方式传达的。我们提出了一个两阶段的微调策略,以基于单一类型的上下文知识的大规模弱标记的数据,并采用教师学生范式将多种类型的上下文化知识注入学生机器读者。实验结果表明,我们的方法在机器阅读理解数据集C^3上的准确性提高了4.3%,因此我们的方法的表现优于最先进的基线,其中大多数问题都需要未阐明的先验知识。

In this paper, we aim to extract commonsense knowledge to improve machine reading comprehension. We propose to represent relations implicitly by situating structured knowledge in a context instead of relying on a pre-defined set of relations, and we call it contextualized knowledge. Each piece of contextualized knowledge consists of a pair of interrelated verbal and nonverbal messages extracted from a script and the scene in which they occur as context to implicitly represent the relation between the verbal and nonverbal messages, which are originally conveyed by different modalities within the script. We propose a two-stage fine-tuning strategy to use the large-scale weakly-labeled data based on a single type of contextualized knowledge and employ a teacher-student paradigm to inject multiple types of contextualized knowledge into a student machine reader. Experimental results demonstrate that our method outperforms a state-of-the-art baseline by a 4.3% improvement in accuracy on the machine reading comprehension dataset C^3, wherein most of the questions require unstated prior knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源