论文标题
在$ \ widetilde {sl} _2 \ times gl_2 $的L功能的Rankin-Selberg积分上
On a Rankin-Selberg integral of the L-function for $\widetilde{SL}_2\times GL_2$
论文作者
论文摘要
我们在特殊组$ G_2 $上提出了Rankin-Selberg的积分,该集成量代表了$ \ widetilde {sl} _2 _2 \ times gl_2 $的通用cuspidal表示的L功能。作为一个应用程序,我们表明$ g_2 $上的某些傅里叶雅各比类型时期是不变的。
We present a Rankin-Selberg integral on the exceptional group $G_2$ which represents the L-function for generic cuspidal representations of $\widetilde{SL}_2\times GL_2$. As an application, we show that certain Fourier-Jacobi type periods on $G_2$ are non-vanishing.