论文标题
重新访问非线性高斯噪声模型:混合纤维跨度的情况
Revisiting the nonlinear Gaussian noise model: The case of hybrid fiber spans
论文作者
论文摘要
我们从第一原理重新逐渐重新逐渐将非线性高斯噪声模型的理论框架推广到每个跨度具有多种光纤类型和理想奈奎斯特光谱的相干光学系统的情况。我们专注于杂交纤维跨度非线性噪声方差积分的准确数值评估。该任务包括解决四个计算方面:(i)采用新颖的变量转换(除了使用双曲线坐标之外),该变量将积分更改为数值正交的更合适形式; (ii)分析在其下限的积分分析中,在集成剂显示奇点的情况下; (iii)将整合间隔间隔为大小pi的子间隔,并使用各种算法近似每个子间隙中的积分; (iv)在截断积分间隔以加速计算时,为相对误差提供了上限。我们将所提出的模型应用于具有杂交纤维跨度的相干光学通信系统,该模型由准弹性纤维和单模光纤段组成。使用拆分型傅立叶方法和蒙特卡洛模拟检查了与混合纤维跨度的长途相干光学通信系统中非线性噪声方差的最终分析关系的准确性。证明它足以在0.1 dBQ以内,以确定每个跨度最大化系统性能的最佳纤维段长度。
We rederive from first principles and generalize the theoretical framework of the nonlinear Gaussian noise model to the case of coherent optical systems with multiple fiber types per span and ideal Nyquist spectra. We focus on the accurate numerical evaluation of the integral for the nonlinear noise variance for hybrid fiber spans. This task consists in addressing four computational aspects: (i) Adopting a novel transformation of variables (other than using hyperbolic coordinates) that changes the integrand to a more appropriate form for numerical quadrature; (ii) Evaluating analytically the integral at its lower limit, where the integrand presents a singularity; (iii) Dividing the interval of integration into subintervals of size pi and approximating the integral in each subinterval by using various algorithms; and (iv) Deriving an upper bound for the relative error when the interval of integration is truncated in order to accelerate computation. We apply the proposed model to coherent optical communications systems with hybrid fiber spans composed of quasi-singlemode fiber and single-mode fiber segments. The accuracy of the final analytical relationship for the nonlinear noise variance in long-haul coherent optical communications systems with hybrid fiber spans is checked using the split-step Fourier method and Monte Carlo simulation. It is shown to be adequate to within 0.1 dBQ for the determination of the optimal fiber segment lengths per span that maximize system performance.