论文标题

找到多站点磷酸化机制的随机山函数的可接受参数区域

Finding Acceptable Parameter Regions of Stochastic Hill functions for Multisite Phosphorylation Mechanism

论文作者

Chen, Minghan, Ahmadian, Mansooreh, Watson, Layne, Cao, Yang

论文摘要

多站点磷酸化在调节开关蛋白活性中起着重要作用,并且已在数学模型中广泛使用。随着新的实验技术和更多分子数据的发展,许多具有越来越复杂和大小的系统中出现了分子磷酸化过程。这些发展要求简单但有效的随机模型来描述各种多站点磷酸化过程,尤其是在大型和复杂的生化网络中。为了降低模型的复杂性,这项工作旨在通过随机山函数模型来简化多站点磷酸化机制。此外,这项工作优化了参数空间的区域,以匹配随机山函数的仿真结果与分布式多站点磷酸化过程。尽管传统参数优化方法一直集中在寻找最佳参数向量上,但在大多数情况下,建模者希望找到一组生成类似系统动力学和结果的参数向量。本文提出了一般的$α$ - $β$ - $γ$规则,以返回基于准Newton随机优化(QNSTOP)算法的随机山函数可接受的参数区域。研究了不同的目标函数,以表征基于仿真的经验数据的不同特征,其中建议对一般应用进行近似的最大对数可能方法。数值结果表明,使用适当的参数矢量值,随机山函数模型表明了多站点磷酸化过程,除了初始(瞬态)时期。

Multisite phosphorylation plays an important role in regulating switchlike protein activity and has been used widely in mathematical models. With the development of new experimental techniques and more molecular data, molecular phosphorylation processes emerge in many systems with increasing complexity and sizes. These developments call for simple yet valid stochastic models to describe various multisite phosphorylation processes, especially in large and complex biochemical networks. To reduce model complexity, this work aims to simplify the multisite phosphorylation mechanism by a stochastic Hill function model. Further, this work optimizes regions of parameter space to match simulation results from the stochastic Hill function with the distributive multisite phosphorylation process. While traditional parameter optimization methods have been focusing on finding the best parameter vector, in most circumstances modelers would like to find a set of parameter vectors that generate similar system dynamics and results. This paper proposes a general $α$-$β$-$γ$ rule to return an acceptable parameter region of the stochastic Hill function based on a quasi-Newton stochastic optimization (QNSTOP) algorithm. Different objective functions are investigated characterizing different features of the simulation-based empirical data, among which the approximate maximum log-likelihood method is recommended for general applications. Numerical results demonstrate that with an appropriate parameter vector value, the stochastic Hill function model depicts the multisite phosphorylation process well except the initial (transient) period.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源