论文标题

我们应该信任(x)AI吗?结构化实验评估的设计维度

Should We Trust (X)AI? Design Dimensions for Structured Experimental Evaluations

论文作者

Sperrle, Fabian, El-Assady, Mennatallah, Guo, Grace, Chau, Duen Horng, Endert, Alex, Keim, Daniel

论文摘要

本文系统地得出了可解释人工智能(XAI)方法的结构化评估的设计维度。这些维度可以描述性表征,从而促进了不同研究设计之间的比较。它们进一步构建了XAI的设计空间,融合了对XAI进行严格研究所需的精确术语。我们的文献综述区分了比较研究和应用论文,揭示了机器学习,人类计算机相互作用和视觉分析领域之间的方法论差异。通常,这些学科中的每一个都针对XAI过程的特定部分。弥合所得差距可以在现实情况下对XAI进行整体评估,这是由我们表征偏见来源和信任建设的概念模型所提出的。此外,我们根据观察到的研究差距确定并讨论未来工作的潜力,这些差距应更好地覆盖所提出的模型。

This paper systematically derives design dimensions for the structured evaluation of explainable artificial intelligence (XAI) approaches. These dimensions enable a descriptive characterization, facilitating comparisons between different study designs. They further structure the design space of XAI, converging towards a precise terminology required for a rigorous study of XAI. Our literature review differentiates between comparative studies and application papers, revealing methodological differences between the fields of machine learning, human-computer interaction, and visual analytics. Generally, each of these disciplines targets specific parts of the XAI process. Bridging the resulting gaps enables a holistic evaluation of XAI in real-world scenarios, as proposed by our conceptual model characterizing bias sources and trust-building. Furthermore, we identify and discuss the potential for future work based on observed research gaps that should lead to better coverage of the proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源