论文标题
在一些$ p $ - 差异分级链接同源性
On some $p$-differential graded link homologies
论文作者
论文摘要
我们表明,在一个积极的奇数特征$ p $的领域,三个分级的Khovanov-Rozansky的共同体和链接下降到同型类别类别有限维$ p $ complexes中的一个不变。 CAUTIS发现的三个分级同源性的$ P $扩展差异与$ p $ -DG结构兼容。结果,我们得到了在奇怪的统一根部评估的琼斯多项式的分类
We show that the triply graded Khovanov-Rozansky homology of knots and links over a field of positive odd characteristic $p$ descends to an invariant in the homotopy category finite-dimensional $p$-complexes. A $p$-extended differential on the triply graded homology discovered by Cautis is compatible with the $p$-DG structure. As a consequence we get a categorification of the Jones polynomial evaluated at an odd prime root of unity