论文标题
Gevrey功能空间中MHD边界层系统的适合性,没有结构假设
Well-posedness of the MHD boundary layer system in Gevrey function space without Structural Assumption
论文作者
论文摘要
我们在Gevrey功能空间中建立了MHD边界层系统的适当性,而没有任何结构假设。与经典的prandtl方程相比,切向导数的损失来自彼此耦合的速度和磁场。通过观察系统中一种新型的取消机制来克服损失衍生化的退化,我们表明,MHD边界层系统在两个和三维空间中均具有高达$ 3/2 $的Gevrey Index。
We establish the well-posedness of the MHD boundary layer system in Gevrey function space without any structural assumption. Compared to the classical Prandtl equation, the loss of tangential derivative comes from both the velocity and magnetic fields that are coupled with each other. By observing a new type of cancellation mechanism in the system for overcoming the loss derivative degeneracy, we show that the MHD boundary layer system is well-posed with Gevrey index up to $3/2$ in both two and three dimensional spaces.