论文标题
SNR增强扩散MRI具有结构的低级别denoing在重现内核希尔伯特空间中
SNR-enhanced diffusion MRI with structure-preserving low-rank denoising in reproducing kernel Hilbert spaces
论文作者
论文摘要
目的:介绍,开发和评估一种新型的脱氧技术,用于扩散MRI,该技术利用数据中的非线性冗余,以增强SNR,同时保留信号信息。方法:我们通过内核主成分分析(KPCA)利用DMRI数据的非线性冗余,这是PCATO重现核心Hilbert Space的非线性概括。通过将信号映射到高维空间中,尽管数据中的非线性非线性,但可以实现更好的冗余,从而使比线性PCA更好地降解。我们使用高斯内核实施KPCA,并从噪声统计的知识中自动选择参数,并在现实的蒙特卡罗模拟以及体内人脑脑集合DMRI数据上对其进行验证。我们还使用多圈DMRI数据证明了KPCA Denoising。结果:与KPCA授予的实际体内数据集中获得了最高2.7 X的SNR改进,与使用最先进的PCA Denoising(例如Marchenko- Pastur PCA(MPPCA))相比,SNR的收益最高为1.8 x。与通过平均数据创建的金标准数据集引用相比,我们显示与MPPCA相比,KPCA实现了较低的归一化均方根误差(NRMSE)。残差的统计分析表明,只有噪声被去除。证明了扩散模型参数的估计参数的改进,例如分数各向异性,平均扩散率和纤维取向分布函数(FODF)。结论:DMRI信号的非线性冗余可以用KPCA利用,它可以比最新的PCA方法进行质量降低/ SNR的改进,而不会丢失信号信息。
Purpose: To introduce, develop, and evaluate a novel denoising technique for diffusion MRI that leverages non-linear redundancy in the data to boost the SNR while preserving signal information. Methods: We exploit non-linear redundancy of the dMRI data by means of Kernel Principal Component Analysis (KPCA), a non-linear generalization of PCAto reproducing kernel Hilbert spaces. By mapping the signal to a high-dimensional space, better redundancy is achieved despite nonlinearities in the data thereby enabling better denoising than linear PCA. We implement KPCA with a Gaussian kernel, with parameters automatically selected from knowledge of the noise statistics, and validate it on realistic Monte-Carlo simulations as well as with in-vivo human brain submillimeter resolution dMRI data. We demonstrate KPCA denoising using multi-coil dMRI data also. Results: SNR improvements up to 2.7 X were obtained in real in-vivo datasets denoised with KPCA, in comparison to SNR gains of up to 1.8 X when using state-of-the-art PCA denoising, e.g., Marchenko- Pastur PCA (MPPCA). Compared to gold-standard dataset references created from averaged data, we showed that lower normalized root mean squared error (NRMSE) was achieved with KPCA compared to MPPCA. Statistical analysis of residuals shows that only noise is removed. Improvements in the estimation of diffusion model parameters such as fractional anisotropy, mean diffusivity, and fiber orientation distribution functions (fODFs)were demonstrated. Conclusion:Non-linear redundancy of the dMRI signal can be exploited with KPCA, which allows superior noise reduction/ SNR improvements than state-of-the-art PCA methods, without loss of signal information.