论文标题

一个完全耦合的框架,用于求解Cahn-Hilliard Navier-Stokes方程:基于自适应OCTREE网格的二阶,能量稳定的数值方法

A fully-coupled framework for solving Cahn-Hilliard Navier-Stokes equations: Second-order, energy-stable numerical methods on adaptive octree based meshes

论文作者

Khanwale, Makrand A, Saurabh, Kumar, Fernando, Milinda, Calo, Victor M., Rossmanith, James A., Sundar, Hari, Ganapathysubramanian, Baskar

论文摘要

我们提出了一个完全耦合的,隐式的框架,用于求解热力学一致的Cahn-Hilliard Navier-Stokes System,该系统对两相流进行建模。在这项工作中,我们扩展了Khanwale等人介绍的块迭代方法。 [\ textit {用热力学上一致的能量稳定的cahn-hilliard navier-stokes方程在平行自适应OCTREE网格上},J。Comput。物理。 (2020)],在保持能量稳定性的同时,及时及时耦合,证明是二阶准确的方案。在每次牛顿迭代中,新方法需要更少的矩阵组件,从而导致解决方案时间更快。该方法基于时间上完全显着的曲柄 - 尼古尔森方案,以及相等级别的盖素公式的压力稳定。也就是说,我们在配备有基于残余的变分多尺度(RBVM)程序的空间中使用构象的连续盖尔金(CG)有限元方法来稳定压力。我们使用基于OCTREE的平行自适应网格将这种方法部署在大规模并行数值实现中。我们提出了全面的数值实验,显示了针对规范案例的文献的详细比较,包括单个气泡上升,雷利 - 泰勒不稳定性和盖子驱动的腔流量问题。我们详细分析了数值实现的缩放。

We present a fully-coupled, implicit-in-time framework for solving a thermodynamically-consistent Cahn-Hilliard Navier-Stokes system that models two-phase flows. In this work, we extend the block iterative method presented in Khanwale et al. [\textit{Simulating two-phase flows with thermodynamically consistent energy stable Cahn-Hilliard Navier-Stokes equations on parallel adaptive octree based meshes}, J. Comput. Phys. (2020)], to a fully-coupled, provably second-order accurate scheme in time, while maintaining energy-stability. The new method requires fewer matrix assemblies in each Newton iteration resulting in faster solution time. The method is based on a fully-implicit Crank-Nicolson scheme in time and a pressure stabilization for an equal order Galerkin formulation. That is, we use a conforming continuous Galerkin (cG) finite element method in space equipped with a residual-based variational multiscale (RBVMS) procedure to stabilize the pressure. We deploy this approach on a massively parallel numerical implementation using parallel octree-based adaptive meshes. We present comprehensive numerical experiments showing detailed comparisons with results from the literature for canonical cases, including the single bubble rise, Rayleigh-Taylor instability, and lid-driven cavity flow problems. We analyze in detail the scaling of our numerical implementation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源