论文标题
生物膜中偶极和疏水运动的脱钩
Decoupling of dipolar and hydrophobic motions in biological membranes
论文作者
论文摘要
细胞使用稳态机制来维持细胞膜中不同类型的磷脂的最佳组成。由磷脂头组组成的膜界面处的亲水性偶极层调节细胞膜与传入分子,纳米颗粒和病毒之间的相互作用。另一方面,膜疏水核决定膜厚度,并为膜结合的分子(例如跨膜蛋白)形成环境。一个基本的开放问题是,这些区域的运动在多大程度上是耦合的,因此,脂质头组与其他分子的相互作用有多依赖于膜疏水性核心的性质和组成。我们将先进的固态核磁共振光谱方法与高保真分子动力学模拟相结合,以证明胆碱头组的旋转动力学如何保持几乎没有变化(稍微更快),并将胆固醇掺入磷脂膜中,与其他众所周知的磷酸化磷酸化相反。值得注意的是,我们的结果表明了一个新的范式,其中磷脂头组在界面上以准旋转的柔性偶极子的相互作用,与疏水区的性质无关。
Cells use homeostatic mechanisms to maintain an optimal composition of distinct types of phospholipids in cellular membranes. The hydrophilic dipolar layer at the membrane interface, composed of phospholipid headgroups, regulates the interactions between cell membranes and incoming molecules, nanoparticles, and viruses. On the other hand, the membrane hydrophobic core determines membrane thickness and forms an environment for membrane-bound molecules such as transmembrane proteins. A fundamental open question is to what extent the motions of these regions are coupled and, consequently, how strongly the interactions of lipid headgroups with other molecules depend on the properties and composition of the membrane hydrophobic core. We combine advanced solid-state nuclear magnetic resonance spectroscopy methodology with high-fidelity molecular dynamics simulations to demonstrate how the rotational dynamics of choline headgroups remain nearly unchanged (slightly faster) with incorporation of cholesterol into a phospholipid membrane, contrasting the well known extreme slowdown of the other phospholipid segments. Notably, our results suggest a new paradigm where phospholipid headgroups interact as quasi-freely rotating flexible dipoles at the interface, independent of the properties in the hydrophobic region.