论文标题
微型电路,用于对软静电传感器的电容自感和闭环控制
Miniaturized Circuitry for Capacitive Self-sensing and Closed-loop Control of Soft Electrostatic Transducers
论文作者
论文摘要
软机器人技术是一个机器人系统设计的领域,其特征是材料和结构,这些材料和结构表现出大规模变形,高依从性和丰富的多功能性。柔软和可变形结构的结合赋予了软机器人系统的合规性和弹性,使它们适应了非结构化和动态的环境。尽管软机器人的致动机制变化很大,但软静电传感器(例如介电弹性体执行器(DEAS))和液压放大的自我修复静电静电(HASEL)致动器,由于其肌肉样性能和能力自我感知能力而表现出了希望。尽管以前努力通过覆盖正弦式低压信号来实施静电传感器中的自感应,但这些设计仍然需要传感高压信号,这需要庞大的组件,以防止与微型,不受欢迎的软机器人相结合。我们提出了一种电路设计,以消除对任何高压感测组件的需求,从而促进使用现成的组件的简单低成本电路的设计。使用此电路,我们对包括圆形DEAS和HASEL执行器在内的一系列静电传感器进行同时进行感应和驱动,并证明了准确的估计位移,误差低于4%。我们将该电路进一步发展为一个紧凑而便携的系统,该系统将HV驱动,传感和计算作为原型,将其作为原型,朝着无束缚的多功能软机器人系统。最后,我们通过由Peano-Hasel执行器提供动力的机器人手臂的反馈对照来证明我们的自感设计的功能。
Soft robotics is a field of robotic system design characterized by materials and structures that exhibit large-scale deformation, high compliance, and rich multifunctionality. The incorporation of soft and deformable structures endows soft robotic systems with the compliance and resiliency that makes them well-adapted for unstructured and dynamic environments. While actuation mechanisms for soft robots vary widely, soft electrostatic transducers such as dielectric elastomer actuators (DEAs) and hydraulically amplified self-healing electrostatic (HASEL) actuators have demonstrated promise due to their muscle-like performance and capacitive self-sensing capabilities. Despite previous efforts to implement self-sensing in electrostatic transducers by overlaying sinusoidal low-voltage signals, these designs still require sensing high-voltage signals, requiring bulky components that prevent integration with miniature, untethered soft robots. We present a circuit design that eliminates the need for any high-voltage sensing components, thereby facilitating the design of simple, low cost circuits using off-the-shelf components. Using this circuit, we perform simultaneous sensing and actuation for a range of electrostatic transducers including circular DEAs and HASEL actuators and demonstrate accurate estimated displacements with errors under 4%. We further develop this circuit into a compact and portable system that couples HV actuation, sensing, and computation as a prototype towards untethered, multifunctional soft robotic systems. Finally, we demonstrate the capabilities of our self-sensing design through feedback-control of a robotic arm powered by Peano-HASEL actuators.