论文标题

电子商务产品的多模式联合属性预测和价值提取

Multimodal Joint Attribute Prediction and Value Extraction for E-commerce Product

论文作者

Zhu, Tiangang, Wang, Yue, Li, Haoran, Wu, Youzheng, He, Xiaodong, Zhou, Bowen

论文摘要

产品属性值在许多电子商务方案中至关重要,例如客户服务机器人,产品建议和产品检索。在现实世界中,产品的属性值通常是不完整的,并且随着时间的流逝而变化,这极大地阻碍了实际应用。在本文中,我们提出了一种多模式方法,可以在产品图像的帮助下从文本产品描述中共同预测产品属性并提取值。我们认为产品属性和值高度相关,例如,在给出产品属性的条件下提取值会更容易。因此,我们将属性预测和值提取任务从多个方面归于属性和值之间的相互作用。此外,产品图像对不同产品属性和值的任务具有明显的影响。因此,我们从产品图像中有选择地绘制有用的视觉信息以增强我们的模型。我们注释一个包含87,194个实例的多模式产品属性值数据集,并且该数据集的实验结果表明,明确对属性和值之间的关系进行了明确建模,这有助于我们在它们之间建立对应关系的方法,并选择性地利用视觉产品信息来利用视觉产品信息。我们的代码和数据集将向公众发布。

Product attribute values are essential in many e-commerce scenarios, such as customer service robots, product recommendations, and product retrieval. While in the real world, the attribute values of a product are usually incomplete and vary over time, which greatly hinders the practical applications. In this paper, we propose a multimodal method to jointly predict product attributes and extract values from textual product descriptions with the help of the product images. We argue that product attributes and values are highly correlated, e.g., it will be easier to extract the values on condition that the product attributes are given. Thus, we jointly model the attribute prediction and value extraction tasks from multiple aspects towards the interactions between attributes and values. Moreover, product images have distinct effects on our tasks for different product attributes and values. Thus, we selectively draw useful visual information from product images to enhance our model. We annotate a multimodal product attribute value dataset that contains 87,194 instances, and the experimental results on this dataset demonstrate that explicitly modeling the relationship between attributes and values facilitates our method to establish the correspondence between them, and selectively utilizing visual product information is necessary for the task. Our code and dataset will be released to the public.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源