论文标题

Hermitian K理论稳定$ \ infty $ - 类别I:基础

Hermitian K-theory for stable $\infty$-categories I: Foundations

论文作者

Calmès, Baptiste, Dotto, Emanuele, Harpaz, Yonatan, Hebestreit, Fabian, Land, Markus, Moi, Kristian, Nardin, Denis, Nikolaus, Thomas, Steimle, Wolfgang

论文摘要

本文是我们在稳定的$ \ infty $类别中为Hermitian K理论提供新框架的系列中的第一篇。我们的观点将解决方案带入了涉及Grothendieck-Witt的各种经典问题,并阐明了当2个不可逆转时这些不变的行为。 在本文中,我们通过考虑Lurie的Poincaré$ \ Infty $ -scategory的概念来奠定方法的基础,该概述允许抽象的单模式形式称为Poincaré对象。我们分析了双曲线和代谢庞加对物体的特殊情况,并建立了Ranicki的代数Thom Construction的版本。对于派生的$ \ infty $ - 戒指类别,我们对所有庞加莱结构进行了分类,并详细研究了它们从经典输入中派生的过程,从而在我们的框架内找到了通常的表格设置。我们还开发了可见的庞加莱结构的示例,该结构在$ \ indy $ - 参数光谱的类别上,恢复了Poincaré二元空间的可见签名。 我们对Poincaré$ \ infty $类别的全球结构属性进行了彻底的调查,特别表明它们形成了双封闭式,封闭的对称性单体$ \ infty $ - 类别。我们还研究了有限的简单综合体的张量和进行封存的过程,这是我们在下一期中考虑的L-和Grothendieck-Witt Spectra的定义中突出的结构。 最后,我们已经在这里定义了使用发电机和关系的庞加莱$ \ infty $分类的第0-八角木惠特小组。我们提取其基本属性,特别是与0- l-和代数K组相关的,该关系在第二部分中升级到光纤序列,在我们的应用中起着关键作用。

This paper is the first in a series in which we offer a new framework for hermitian K-theory in the realm of stable $\infty$-categories. Our perspective yields solutions to a variety of classical problems involving Grothendieck-Witt groups of rings and clarifies the behaviour of these invariants when 2 is not invertible. In this article we lay the foundations of our approach by considering Lurie's notion of a Poincaré $\infty$-category, which permits an abstract counterpart of unimodular forms called Poincaré objects. We analyse the special cases of hyperbolic and metabolic Poincaré objects, and establish a version of Ranicki's algebraic Thom construction. For derived $\infty$-categories of rings, we classify all Poincaré structures and study in detail the process of deriving them from classical input, thereby locating the usual setting of forms over rings within our framework. We also develop the example of visible Poincaré structures on $\infty$-categories of parametrised spectra, recovering the visible signature of a Poincaré duality space. We conduct a thorough investigation of the global structural properties of Poincaré $\infty$-categories, showing in particular that they form a bicomplete, closed symmetric monoidal $\infty$-category. We also study the process of tensoring and cotensoring a Poincaré $\infty$-category over a finite simplicial complex, a construction featuring prominently in the definition of the L- and Grothendieck-Witt spectra that we consider in the next instalment. Finally, we define already here the 0-th Grothendieck-Witt group of a Poincaré $\infty$-category using generators and relations. We extract its basic properties, relating it in particular to the 0-th L- and algebraic K-groups, a relation upgraded in the second instalment to a fibre sequence of spectra which plays a key role in our applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源