论文标题
来自黑洞中子星星合并的偏光kilonovae
Polarized kilonovae from black hole-neutron star mergers
论文作者
论文摘要
我们预测在黑洞和中子恒星合并后,放射性驱动的基洛诺瓦的线性极化。具体而言,我们为两个不同的模型执行了3-D Monte Carlo辐射传输模拟,均具有来自数值余量模拟的富含灯笼的动力学喷射成分,而只有一个包括附加的无灯笼磁盘风组分。我们计算合并后1.5、2.5和3.5 d的九个不同方向的极化光谱,在$ 0.1-2 \,μ$ m波长范围内。我们发现,在合并后,两种模型在可检测到的水平1.5 d上均极化,而此后显示可忽略不计。这两个模型的极化光谱是显着差异的。缺乏磁盘风的模型在光学上没有极化,而信号在更长的波长下增加并达到$ \ sim1 \%-6 \%$,$ 2 \,μ$ m,取决于方向。取而代之的是具有磁盘 - 风组件的模型具有特征性的“双峰”极化谱,其中一个峰为光学峰,而红外则具有另一个峰。对未来事件的极化观察将阐明磁盘 - 风组件的中子丰富性。光学极化的检测将明确揭示出无灯笼的磁盘 - 风的存在,而极化从光学中的零增加到红外线的峰会表明整个弹出物中富含灯笼的成分。未来的极化活动应优先考虑在第一个$ \ sim48 $小时,在$ 0.5-2 \,μ$ m范围内,极化是最强的,但也可以探索更短的波长/以后的时间,在kilonova和星际极化的情况下预计不会有任何信号。
We predict linear polarization for a radioactively-powered kilonova following the merger of a black hole and a neutron star. Specifically, we perform 3-D Monte Carlo radiative transfer simulations for two different models, both featuring a lanthanide-rich dynamical ejecta component from numerical-relativity simulations while only one including an additional lanthanide-free disk wind component. We calculate polarization spectra for nine different orientations at 1.5, 2.5 and 3.5 d after the merger and in the $0.1-2\,μ$m wavelength range. We find that both models are polarized at a detectable level 1.5 d after the merger while show negligible levels thereafter. The polarization spectra of the two models are significantly different. The model lacking a disk wind shows no polarization in the optical, while a signal increasing at longer wavelengths and reaching $\sim1\%-6\%$ at $2\,μ$m depending on the orientation. The model with a disk-wind component, instead, features a characteristic "double-peak" polarization spectrum with one peak in the optical and the other in the infrared. Polarimetric observations of future events will shed light on the debated neutron richness of the disk-wind component. The detection of optical polarization would unambiguously reveal the presence of a lanthanide-free disk-wind component, while polarization increasing from zero in the optical to a peak in the infrared would suggest a lanthanide-rich composition for the whole ejecta. Future polarimetric campaigns should prioritize observations in the first $\sim48$ hours and in the $0.5-2\,μ$m range, where polarization is strongest, but also explore shorter wavelengths/later times where no signal is expected from the kilonova and the interstellar polarization can be safely estimated.