论文标题
卫星的Gluck Twist and Onneytting $ 2 $ - 结
Gluck twist and unknotting of satellite $2$-knots
论文作者
论文摘要
在本文中,我们表明,某些卫星的Gluck扭曲$ 2 $ - 以$ 4 $ -MANIFOLD以三种不同的方式改变了差异性类型:一种直接来自卫星的定义$ 2 $ - 结,另外两个是通过找到对卫星$ 2 $ 2 $ 2 $ -KKNOT的同等描述。此外,使用新的描述,我们给出了无限数量的新示例$ 2 $ - 开关,这些示例是通过连接的,将单个标准的真实投影平面求和连接。
In this paper, we show that the Gluck twist of certain satellite $2$-knots in a $4$-manifold do not change the diffeomorphism type in three different ways: one is directly from the definition of the satellite $2$-knot, and the other two are by finding an equivalent description of the satellite $2$-knot. Furthermore, using the new description, we gave infinite number of new examples of $2$-knots which are unknotted by connected summing a single standard real projective plane.