论文标题

通过学习低损失预测指标的复杂性评估表示形式

Evaluating representations by the complexity of learning low-loss predictors

论文作者

Whitney, William F., Song, Min Jae, Brandfonbrener, David, Altosaar, Jaan, Cho, Kyunghyun

论文摘要

我们考虑评估用于解决下游任务的数据表示的问题。我们建议通过学习在感兴趣的任务上实现低损失的代表性的复杂性来衡量表示的质量,并引入两种方法,剩余描述长度(SDL)和$ \ VAREPSILON $样本复杂性($ \ \ \ \ \ \ \ \ \ varepsilon $ sc)。与先前的方法相反,这些方法衡量了有关特定数据中存在的最佳预测变量的信息量,我们的方法测量了从数据中恢复最佳预测变量近似至指定公差所需的信息的量。我们提出了一个框架,以基于绘制验证损失与评估数据集大小(“损失数据”曲线)的框架进行比较。现有的度量(例如相互信息和最小描述长度探针)对应于沿损耗数据曲线的数据轴的切片和积分,而我们的切片和积分对应于沿损耗轴的切片和积分。我们提供有关实际数据的实验,以比较各种大小的数据集的行为以及高性能开源库,以在https://github.com/willwhitney/reprieve上进行表示评估。

We consider the problem of evaluating representations of data for use in solving a downstream task. We propose to measure the quality of a representation by the complexity of learning a predictor on top of the representation that achieves low loss on a task of interest, and introduce two methods, surplus description length (SDL) and $\varepsilon$ sample complexity ($\varepsilon$SC). In contrast to prior methods, which measure the amount of information about the optimal predictor that is present in a specific amount of data, our methods measure the amount of information needed from the data to recover an approximation of the optimal predictor up to a specified tolerance. We present a framework to compare these methods based on plotting the validation loss versus evaluation dataset size (the "loss-data" curve). Existing measures, such as mutual information and minimum description length probes, correspond to slices and integrals along the data axis of the loss-data curve, while ours correspond to slices and integrals along the loss axis. We provide experiments on real data to compare the behavior of each of these methods over datasets of varying size along with a high performance open source library for representation evaluation at https://github.com/willwhitney/reprieve.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源