论文标题
Bibounded UO-Convergence和B-Property在矢量晶格中
Bibounded uo-convergence and b-property in vector lattices
论文作者
论文摘要
我们在矢量晶格中定义了双方界限$ uo $ convergence,并调查了这种融合与$ b $ - property之间的关系。我们证明,对于常规的Riesz双系统$ \ langle X,X^{\ sim} \ rangle $,$ x $具有$ b $ -property,并且仅当$ x $中的订单收敛与$ x^{\ x^{\ sim \ sim} $中的订单收敛相符。
We define bidual bounded $uo$-convergence in vector lattices and investigate relations between this convergence and $b$-property. We prove that for a regular Riesz dual system $\langle X,X^{\sim}\rangle$, $X$ has $b$-property if and only if the order convergence in $X$ agrees with the order convergence in $X^{\sim\sim}$.